
Getting More Out Of Apache (Part 2)

By icarus

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
Tip O' The Iceberg..1

Eyes Only...2

Identity Check...4

Grouping Things Together...5

Timmmmmmbbbbberrrr! ...6

When Things Go Wrong..8

Just Rewrite It!..9

Putting It Into Practice...10

Getting More Out Of Apache (Part 2)

i

Tip O' The Iceberg
Last time, I showed you how to configure Apache to service multiple Web sites on the same physical server,
and include server−side information in your Web page. But that's just the tip of the iceberg − Apache allows
you to do a whole lot more, and over the next few pages, I'll be discussing the server's authentication and
logging capabilities, together with a brief look at its unique URL re−writing module.

Keep reading!

Tip O' The Iceberg 1

Eyes Only
Security has always been a prime concern so far as the Internet is concerned; barely a week passes without
media reports of security breaches at one Web site or another. If this is something you're concerned about (and
you should be), you can set up Apache to protect confidential information on your Web site with a simple
form of user authentication.

Apache's user authentication mechanism is based on the traditional username−password challenge
mechanism. When the Web server receives a request for a directory or file that it knows to be a protected
resource (aka "realm"), it responds by sending the client browser an authentication challenge. It is only after
receiving a valid username and password back from the client browser that access is granted to the realm.

The concept is simple, and it works well; however, implementing it requires a little more work.

The simplest way to add protection to a specific directory is via the ".htaccess" file. In order to see how this
works, create a file named ".htaccess" in the directory you wish to protect. Open the file in your favourite text
editor and add the following lines to it:

members table
AuthType Basic
AuthName "Top−Secret Information"
AuthUserFile /usr/local/apache/auth/mfre/users
require valid−user

The first two directives are pretty standard − the AuthType directive specifies the type of authentication
(usually "Basic", although there is also a "Digest" type of authentication), while the AuthName directive
specifies a name or description for the resource. This description will appear in the client browser when the
user attempts to access the protected directory, so you should choose something descriptive.

The AuthUserFile directive specifies the location for the file containing a list of authorized users, together
with their passwords. This file should *always* be placed outside the Web server root, in an area not
accessible to a browser; if this is not done, anyone can download the file and view the information in it.

Finally, the "require valid−user" statement specifies the kinds of users that have access to this directory − in
this case, it means that all valid users (read: users listed in the authorization file) have the ability to view the
contents of the directory. You could further restrict the number of people allowed access by specifying user or
group names − for example, the statement "require user joe beth" would only allow users "joe" and "beth"
access to this area.

You should be aware, however, that the server will only read the ".htaccess" file if it is configured to do so. In
order to confirm this, open up your main Apache configuration file, "httpd.conf", and look for the tags which
reference your Web server root. These tags should look something like this:

...stuff...

Eyes Only 2

AllowOverride All
...stuff...

The

AllowOverride All

directive tells the server that global configuration parameters can be overridden by local ones − the parameters
in the per−directory ".htaccess" file.

Getting More Out Of Apache (Part 2)

Eyes Only 3

Identity Check
If you've been paying attention, you'll have noticed that there's one thing missing − the authorization file
itself. And Apache comes with its own little utility to create the file − it's called "htpasswd".

Switch to the directory specified in the AuthUserFile directive above, ad run the "htpasswd" command to
create a file containing authorized users − you might see something like this:

$ htpasswd −c users joe
Adding password for joe.
New password:
Re−type new password:

And if you peek into the file "users", you'll see that the user has been added to the file − the garbage next to
the user name is the password you just entered, in encrypted form.

$ cat users
joe:9DyNcHx.8JOp2

You can add as many users as you like using the method above (remember to omit the −c parameter, though,
since that's only used when creating a file for the first time).

With everything in place, start up your browser and point it to the directory you just protected. The Web
server should immediately pop up a dialog box asking for a username and password, and will only allow you
to view the contents of the directory if you enter the correct values. Ain't that cool?

Identity Check 4

Grouping Things Together
In addition to user−level access, Apache also allows you to create different groups of individual users, and
restrict access to protected resources based on group membership. For example, let's assume that I have two
groups, "accounts" and "admin", and I would like to restrict access to a directory only to members of the
"accounts" group.

The first thing to do is change the ".htaccess" file in the directory to read

AuthType Basic
AuthName "Top−Secret Information"
AuthUserFile /usr/local/apache/auth/mfre/users
AuthGroupFile /usr/local/apache/auth/mfre/groups
require group accounts

Next, you need to create the group memberships file, as specified in the AuthGroupFile directive above. This
file is extremely simple − here's what it looks like:

$ cat groups
admin: bill harry
accounts: joe beth

Translation: users "joe" and "beth" are members of the group "accounts", while "bill" and "harry" are
members of the group "admin".

Now, when you navigate back to the protected directory in your Web browser, Apache will again ask you for
authorization; however, only members of the group "accounts" will be permitted to view the contents of the
directory.

Finally, you can allow or deny access based on host names − the following lines would deny access to the
protected resource for all requests from domains other than "melonfire.com"

order deny,allow
deny from all
allow from melonfire.com

Grouping Things Together 5

Timmmmmmbbbbberrrr!
You may not know this, but Apache comes with some pretty impressive logging capabilities, which allow you
to record demographic information about visitors to your Web site. And these logging capabilities can be
customized to deliver exactly the information you need for later analysis.

Apache comes with two types of logs: there's the "access log", which tracks each and every request made to
the Web server, and the "error log", which tracks internal server errors, missing file and the like. There are a
number of configuration directives in the "httpd.conf" file which allow you to control Apache's default
logging behaviour.

The ErrorLog directive specifies the location of the error log.

ErrorLog logs/error.log

The CustomLog directive specifies the location of the server's access log, together with a format for the log
file (as defined in the LogFormat directive). The default setting is the Common Logfile Format, which places
each request on a separate line; this format records the IP address, the date and time, the bytes sent, and the
first line of the client request.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access.log common

The variables that you see in the LogFormat directive are server variables that return various identifiers for
each client request − you can use these to create your own log format. More information about each variable
does can be obtained from the Apache manual at
http://httpd.apache.org/docs/mod/mod_log_config.html#customlog , or from the list below.

%h − requesting host

%b − bytes sent

%{VARNAME}e − value of environment variable VARNAME

%t − timestamp

%h − remote host

%T − time taken to serve request (seconds)

%U − URL requested

%s − return code for request

Timmmmmmbbbbberrrr! 6

http://httpd.apache.org/docs/mod/mod_log_config.html#customlog

%{User−agent}I − remote user agent identifier

Getting More Out Of Apache (Part 2)

Timmmmmmbbbbberrrr! 7

When Things Go Wrong
By default, Apache logs the IP address of each requesting client. If you'd prefer something a bit friendlier, you
can have Apache log the host name of each client, rather than the IP address. This behaviour is controlled
through the HostNameLookups directive − turn it on to enable name lookups.

HostnameLookups On

Be warned, however, that turning this feature on is likely to slow down the Web server, since it will have to
perform a lookup for each distinct visitor to your Web page.

And finally, you can specify the type and severity of errors that are to be logged to the error log with the
LogLevel directive. A number of error levels are available, ranging from "emerg" and "crit" (for severe errors)
to "info" and "debug" (less−critical information).

This directive comes in particularly handy when you roll your own Apache server and things aren't working
quite as advertised.

When Things Go Wrong 8

Just Rewrite It!
One of Apache's more powerful features − and also one of its least−known ones − is its URL rewriting
module, which makes it possible to manipulate URLs using a rule−based rewriting engine in combination
with regular expressions.

Apache's URL rewriting engine was originally developed by Ralf Engelschall in 1996. He handed it over to
the Apache developers, who integrated it into the Web server, and it's been part and parcel of it since then.
Note, however, that the engine needs to be compiled into the server to use it − so if you plan on trying out any
of the examples below, you may need to re−compile your server with the mod_rewrite module first.

The basis of the mod_rewrite module is rulesets and conditions, which may be specified in either the main
"httpd.conf" configuration file or the per−directory ".htaccess" file. When the server receives a HTTP request,
the rewriting engine begins checking for a matching ruleset; if it finds a match, it substitutes the rewritten
URL for the original one.

It's also possible to add conditions to specific rules − in this case, once a ruleset is matched, the conditions
attached to it are checked, and URL substitution occurs if they are found to be valid.

Rewriting rules are specified with the RewriteRule directive, while conditions are specified with the
RewriteCond directive. RewriteCond directives need to precede RewriteRule directive.

Just Rewrite It! 9

Putting It Into Practice
One of the simplest applications of the rewriting engine is also one of its most valuable − the ability to prevent
Internet users from using images from your site on theirs. By carefully using the rewriting rules in
combination with server variables, you can set things up so that other Web sites attempting to link to images
on your site will not be granted access.

Here are the lines you need to add to your configuration file:

RewriteEngine On
RewriteCond %{HTTP_REFERER} !^$
RewriteRule .*\.jpg$ − [F]

The first directive is obvious − it turns the rewriting engine on. Once the engine is active, HTTP requests are
scanned and matched against rules in the file.

The rules − there may be more than one, and they are interpreted in the order in which they appear − are
specified via regular expressions, as in the example above. The first parameter following the RewriteRule
directive is a pattern, while the second is the substitution pattern; you can also add special flags as a third
parameter to invoke specific behaviour.

The rule above matches HTTP requests for images − files with the .jpg extension. Typically, you would
replace these URLs with another string; however, I've used a hyphen to indicate that no substitution is to take
place. Instead, I've used the [F] flag to have the server return a "403 Forbidden" result to the requesting client.

By itself, this is not enough − if you left it the way it was, every request for an image would be denied. It's
therefore necessary to add a condition which checks whether the request is from another server or not. This
can be done by checking the value of the HTTP_REFERER variable, which will usually not be empty if the
request is coming from another server. The RewriteCond directive above checks the value of this variable, and
activates the rule only when the HTTP_REFERER variable is not empty.

Another interesting application is using the rewriting engine to point your Web server's document root to a
different physical location on your server's hard drive. For example, if you wanted all requests to the server to
be served from the folder

/this/servers/new/root

rather than

/

Putting It Into Practice 10

you could use this simple rule:

RewriteEngine on
RewriteRule ^/$ /this/servers/new/root/ [R]

The [R] flag is used to indicate redirection.

This are just two simple examples which demonstrate the power of URL rewriting − it gets more complex as
you get deeper into it. If you're really interested in find out what else you can do with the URL rewriting
engine, take a look at Ralf Engelschall's Web site at http://www.engelschall.com/ , and at the Apache manual
at http://www.apache.org/docs/mod/mod_rewrite.html

And that's about it from me for this week. See you soon!

Getting More Out Of Apache (Part 2)

Putting It Into Practice 11

http://www.engelschall.com/
http://www.apache.org/docs/mod/mod_rewrite.html

	Table of Contents
	Tip O' The Iceberg
	Eyes Only
	Identity Check
	Grouping Things Together
	Timmmmmmbbbbberrrr!
	When Things Go Wrong
	Just Rewrite It!
	Putting It Into Practice

